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 Nonenzymatic protein glycation and its involvement in 
diabetic complications have been thoroughly investigated 
( 1 ). In addition to the protein glycation, we and some 
researchers have found that glycation reaction also occurs 
in vivo between lipids and glucose ( 2–4 ). It suggests 
that membrane phospholipids such as phosphatidyletha-
nolamine (PE) are abnormally glycated under hyperglyce-
mic conditions and that lipid glycation may contribute to 
the pathogenesis of diabetic complications (e.g., reti-
nopathy, nephropathy, neuropathy, and atherosclerotic 
macrovascular disease). We previously investigated the 
pathophysiological impact of lipid glycation in vitro and 
found that Amadori-PE (an early glycation product of PE,; 
  Fig. 1A  )  caused lipid peroxidation ( 5 ) and angiogenesis 
( 6 ). We also developed a sensitive assay for Amadori-PE 
and demonstrated its accumulation in blood plasma of 
diabetic patients ( 7 ). Knowledge gained from these 
studies ( 2–7 ) provides insight into the involvement of 
Amadori-PE in the pathogenesis of diabetic complica-
tions ( 8, 9 ). 

 Once Amadori-PE is formed, it can further undergo 
complex reactions to form PE-linked advanced glycation 
end products (AGE-PE) such as carboxymethyl-PE (CM-
PE) and carboxyethyl-PE (CE-PE) ( Fig. 1B ) ( 10, 11 ). Simi-
larly to Amadori-PE, AGE-PE is also hypothesized to trigger 
pathological processes ( 10, 11 ); however, to our knowl-
edge, there are only three reports investigating the pres-
ence of AGE-PE in vivo ( 12–14 ). Requena et al. ( 12 ) and 
Pamplona et al. ( 13 ) demonstrated the presence of CM-PE 
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(2:1, v/v). CM-PE and CE-PE were then isolated by using prepara-
tive LC. Under the present conditions, for instance, 5 mg of pure 
18:1-18:1 CM-PE (>99% by LC-MS analysis) was yielded from 7 
mg of 18:1-18:1 PE. Amadori-PE was prepared as we reported pre-
viously ( 5 ). The structure and purity of each synthesized com-
pound were evaluated by LC-MS (Mariner, Applied Biosystems, 
Foster City, CA), high resolution fast atom bombardment (FAB)-MS 
(JEOL-JMS-700 mass station, JEOL, Tokyo, Japan), and NMR 
(Varian Unity 600 spectrometer, Varian, Palo Alto, CA). All other 
reagents were of the highest grade available. 

 In vitro glycation of 18:1-18:1 PE 
 18:1-18:1 PE (9 µmol) was incubated with glucose (15 mmol) 

in 30 ml of 0.1 M phosphate buffer-methanol (3:7, v/v, pH 7.4) 
at 60°C. A portion of the reaction mixture was collected at 0, 3, 6, 
24, and 48 h, and the lipid-soluble products were extracted with 
chloroform-methanol (2:1, v/v) ( 16 ). 

 Blood sample preparation 
 Human blood samples were collected from eight healthy volun-

teers (four females and four males, age 22 ± 1 years) and 10 newly 
detected type 2 diabetic patients (seven females and three males, 
age 55 ± 12 years, hemoglobin A1c 12 ± 2%). None of the diabetic 
patients received any medication for the control of blood glucose 
at the time of blood collection. This study was approved by the in-
stitutional review board of the Nippon Medical School, Tokyo, 
Japan, and informed consent was obtained from all participants. 

 Blood (10 ml) was collected into a tube containing EDTA-2Na 
as an anticoagulant and centrifuged at 1,000  g  for 10 min at 4°C. 
After plasma and buffy coat were removed, erythrocytes were 
washed three times with phosphate-buffered saline (pH 7.4) to 
prepare packed cells. Total lipids were extracted from 1 ml of the 
packed cells using 2-propanol and chloroform ( 17 ). Plasma (1 
ml) was subjected to total lipid extraction using Folch’s partition 

in human erythrocytes and mammalian mitochondrial 
membranes, respectively. In contrast, Breitling-Utzmann 
et al. ( 14 ) reported that neither CM-PE nor CE-PE was de-
tected in blood samples. Because of the potential conse-
quence of AGE-PE in diabetic complications, these 
confl icting results imply the need for a new analytical 
mean to accurately measure CM-PE and CE-PE. To address 
this need, we aimed to develop a quantitative method to 
analyze CM-PE and CE-PE by using LC-MS/MS. With the 
developed method, we analyzed CM-PE and CE-PE in 
erythrocyte and plasma of healthy subjects and diabetic 
patients to assess the effects of hyperglycemia on the ac-
cumulation of early and advanced glycation end products 
of PE (Amadori-PE and AGE-PE, respectively). 

EXPERIMENTAL PROCEDURES

 Materials 
 All PE molecular species were purchased from Avanti Polar 

Lipids (Alabaster, AL). The molecular species were indicated by 
the carbon chain length and the unsaturation degree of the  sn -
1,2 acyl chains; e.g., “16:0-18:1 PE” for 1-hexadecanoyl-2-octade-
cenoyl- sn -glycero-3-phosphoethanolamine. CM-PE and CE-PE 
standards were synthesized by using the PE species as starting ma-
terials, as described by Utzmann and Lederer ( 15 ), with modifi -
cations. In brief, for the synthesis of CM-PE, PE (10 µmol), 
glyoxylate (100 µmol), and cyanoborohydride (10 µmol) were 
dissolved in 100 ml of methanol and incubated at 60°C for 4 h. 
For the synthesis of CE-PE, pyruvate (100 µmol) was used instead 
of glyoxylate. The reaction mixture was evaporated to dryness, 
and the residue was dissolved in 10 ml of chloroform-methanol 

  Fig.   1.  Scheme for the glycation of PE. A: Glucose reacts with the amino group of PE to form a Schiff base, 
which undergoes an Amadori rearrangement to yield the Amadori-PE (deoxy-D-fructosyl PE). B: Possible 
routes to formation of CM-PE and CE-PE in the late stage of glycation.   
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(99:1, v/v; containing 5 mM ammonium acetate). The fl ow rate 
was set at 0.2 ml/min, and the column temperature was main-
tained at 40°C. CM-PE and CE-PE were detected using multiple 
reaction monitoring (MRM) for the transition of parent ions to 
product ions. For the quantitation of CM-PE and CE-PE in blood 
samples, we focused on eight molecular species (16:0-18:1, 16:0-
18:2, 16:0-20:4, 16:0-22:6, 18:0-18:1, 18:0-18:2, 18:0-20:4, and 18:0-
22:6) of both CM-PE and CE-PE, because their presence in 
erythrocytes and plasma was revealed by NLS in MS/MS analysis. 
Using synthesized AGE-PE species, we prepared standard solu-
tions at concentrations of 5–1,000 pmol/ml (a range expected to 
encompass concentrations encountered in vivo). The erythro-
cyte extract, plasma extract, or the standard solution (2 µl each) 
was then subjected to LC-MS/MS, and the AGE-PE molecular 
species were individually detected using MRM. The concentra-
tions of CM-PE and CE-PE in erythrocytes and plasma were calcu-
lated using the calibration curves of the synthesized AGE-PE 
molecules. 

 The MRM detection was also applied for Amadori-PE and 
PE. Amadori-PE and PE were analyzed using a silica column 
(Inertsil, 2.1 × 100 mm; GL Sciences, Tokyo, Japan) with a bi-
nary gradient consisting of solvent A [acetonitrile-methanol-1 
M aqueous ammonium formate (pH 6.0) (78:20:2, v/v/v)] and 
solvent B [acetonitrile-methanol-1 M aqueous ammonium for-
mate (pH 6.0) (49:49:2, v/v/v)]. The gradient profi le was as fol-
lows: 0–1.25 min, 10% B; 1.25–2 min, 10–100% B linear gradient; 
2–6 min, 100% B. The fl ow rate was 0.4 ml/min, and the column 
temperature was at 40°C. The concentrations were calculated 
using the calibration curves of synthesized Amadori-PE and 
authentic PE. 

 Statistics 
 The data are expressed as means ± SD and analyzed using 

Student’s  t -test. Differences were considered signifi cant at 
 P  < 0.01. 

( 16 ). Each extract was evaporated to dryness, and the residue was 
dissolved in 1 ml of chloroform-methanol (2:1, v/v). 

 MS/MS analysis 
 A 4000 QTRAP quadrupole/linear ion-trap tandem mass spec-

trometer (Applied Biosystems) was used for MS/MS analysis. Ini-
tially, we analyzed synthesized 18:1-18:1 CM-PE and 18:1-18:1 
CE-PE as the reference compounds of AGE-PE. To evaluate the 
MS/MS fragmentation, product ion scanning was performed by 
directly injecting 18:1-18:1 CM-PE or 18:1-18:1 CE-PE solution 
(0.2 nmol/ml methanol) into MS/MS (5 µl/injection) using 
methanol as carrier solvent (0.2 ml/min). Electrospray ioniza-
tion was used as an ion source with collision energy of 33 eV, 
transition dwell time of 100 ms, turbo gas temperature at 500°C, 
and spray voltage of 5,000 V. Nitrogen pressure values for turbo, 
nebulizer, and curtain gases were set at 30, 60, and 10 pounds per 
square inch, respectively. Positive ion spectra were collected in 
the  m/z  range of 100–900. 

 Neutral loss scanning (NLS) was performed for profi ling 
CM-PE and CE-PE molecular species in blood samples. The 
MS/MS instrument was programmed to scan parent ions that 
yielded a neutral loss of 199 Da for CM-PE or of 213 Da for 
CE-PE after fragmentation in the collision cell. Sample (eryth-
rocyte extract or plasma extract, 5 µl each) was injected directly 
into MS/MS as described above. Amadori-PE and PE molecular 
species were also evaluated using NLS of 303 Da and 141 Da, 
respectively. 

 LC-MS/MS analysis with multiple reaction monitoring 
 For LC-MS/MS analysis, a Shimadzu liquid chromatography 

system, including a vacuum degasser, a quaternary pump, and an 
autosampler (Shimadzu, Kyoto, Japan), was equipped with the 
4000 QTRAP mass spectrometer. CM-PE and CE-PE were ana-
lyzed using an ODS column (Xbridge, 2.1 × 100 mm; Waters, 
Tokyo, Japan) with an isocratic mobile phase of methanol-water 

  Fig.   2.  MS/MS analysis of CM-PE and CE-PE. Product ion spectrum of the [M+H] +  ion at  m/z  802 of 18:1-18:1 
CM-PE (A) and  m/z  816 of 18:1-18:1 CE-PE (B). NLS of 199 Da and 213 Da showing specifi c detection of 18:1-18:1 
CM-PE (C) and 18:1-18:1 CE-PE (D), respectively. The synthesized 18:1-18:1 CM-PE or 18:1-18:1 CE-PE (each 1 
pmol) was injected directly into MS/MS by an LC pump at the eluent (methanol) fl ow rate of 0.2 ml/min.   
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Product ion scanning indicated that protonated parent 
ions of 18:1-18:1 CM-PE ( m/z  802 [M+H] + ) and 18:1-18:1 
CE-PE ( m/z  816 [M+H] + ) lost corresponding polar head 
groups (H 2 PO 4 CH 2 CH 2 NHCH 2 COOH and H 2 PO 4 CH 2 
CH 2 NHCHCH 3 COOH, respectively) upon collisional acti-
vation, yielding a characteristic fragment ion of diacylglyc-
erol moiety ( m/z  603) (  Fig. 2A, B  ).  The fragmentation was 

RESULTS

 LC-MS/MS analysis of 18:1-18:1 CM-PE and 18:1-18:1 
CE-PE 

 For the LC-MS/MS analysis of AGE-PE, we initially per-
formed product ion scanning using synthesized 18:1-18:1 
CM-PE and 18:1-18:1 CE-PE as reference compounds. 

  Fig.   4.  NLS spectra of the erythrocyte extract from a healthy human subject. NLS of 199, 213, 303, and 141 
Da show the specifi c detection of CM-PE (A), CE-PE (B), Amadori-PE (C), and nonglycated PE (D) species 
in erythrocytes, respectively. Total lipids were extracted from packed cells with 2-propanol and chloroform 
( 17 ). The lipid extract was dissolved in 1 ml of chloroform-methanol (2:1, v/v), and a portion of the extract 
(5 µl) was injected directly into MS/MS by an LC pump at the eluent (methanol) fl ow rate of 0.2 ml/min.   

  Fig.   3.  In vitro lipid glycation and MRM detection of AGE-PE. 18:1-18:1 PE (9 µmol) was incubated with 
glucose (15 mmol) in 30 ml of 0.1 M phosphate buffer-methanol (3:7, v/v, pH 7.4) at 60°C for 0–48 h. Typical 
MRM chromatograms of 18:1-18:1 CM-PE and 18:1-18:1 CE-PE when a lipid extract from the 48 h incubation 
mixture was analyzed by LC-MS/MS (A). Time course of changes in the amounts of 18:1-18:1 CM-PE and 18:1-
18:1 CE-PE (B) and 18:1-18:1 Amadori-PE and 18:1-18:1 nonglycated PE (C). Values are means ± SD (n = 4).   
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(  Fig. 4A, B  ).  Amadori-PE and nonglycated native PE spe-
cies were also detected by NLS of 303 Da (H 2 PO 4 CH 2 CH-
 2 NHC 6 H 11 O 5 ) and 141 Da (H 2 PO 4 CH 2 CH 2 NH 2 ), respectively 
( Fig. 4C, D ). The neutral loss spectra of CM-PE, CE-PE, 
Amadori-PE, and native PE indicated that PE glycation 
proceeded toward the formation of AGE-PE in erythro-
cytes. The glycated molecular species of PE (CM-PE, CE-PE, 
and Amadri-PE molecular species) were also observed in 
NLS spectra of plasma samples; however, some AGE-PE 
species could not be clearly detected in plasma possibly 
due to their low amounts (supplementary  Fig. I ). 

 Determination of AGE-PE in blood samples by 
LC-MS/MS with MRM 

 Based on the results of NLS, CM-PE and CE-PE molecu-
lar species (16:0-18:1, 16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-
18:1, 18:0-18:2, 18:0-20:4, and 18:0-22:6) in erythrocytes 
and plasma were individually quantifi ed by LC-MS/MS 

useful for MRM detection of AGE-PE in LC-MS/MS analy-
sis. For instance, when 18:1-18:1 PE was incubated with 
glucose in vitro, 18:1-18:1 CM-PE and 18:1-18:1 CE-PE 
were clearly identifi ed by LC-MS/MS with MRM (  Fig. 3A  ). 
 The data indicated that CM-PE and CE-PE were actually 
produced as AGE products of PE ( Fig. 3B, C ). 

 Profi ling of AGE-PE molecular species in blood samples 
 NLS of 199 Da and 213 Da yielded the parent ion of 

18:1-18:1 CM-PE ( m/z  802) and 18:1-18:1 CE-PE ( m/z  816), 
respectively ( Fig. 2C, D ). We therefore used NLS of 199 Da 
and 213 Da for profi ling the molecular species of CM-PE 
and CE-PE, respectively. When erythrocyte extract from a 
healthy subject was directly injected to MS/MS, a series of 
ion peaks corresponding to CM-PE and CE-PE molecular 
species (e.g., 16:0-18  :1, 16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-
18:1, 18:0-18:2, 18:0-20:4, and 18:0-22:6) were shown in the 
neutral loss spectra of 199 Da and 213 Da, respectively 

  Fig.   5.  Typical MRM chromatograms and calibration curves of CM-PE and CE-PE standards. A: Synthesized CM-PE or CE-PE (16:0-18:1, 
16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-18:1, 18:0-18:2, 18:0-20:4, and 18:0-22:6; 1 pmol each) was analyzed by LC-MS/MS with MRM. B: The 
calibration curves were constructed with CM-PE and CE-PE standards of different concentrations (0.01–2 pmol/injection).   
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method to analyze AGE-PE with high selectivity and sensi-
tivity at the molecular species level. 

 By using the QTRAP MS/MS, we found that proto-
nated CM-PE and CE-PE tended to generate product ions 
of [M+H-199] +  and [M+H-213] + , respectively ( Fig. 2 ). 
The neutral loss of the polar head group indicates that 
NLS ( Fig. 2 ) and MRM ( Fig. 3 ) are adaptable for the 
(LC-)MS/MS analysis of AGE-PE. The NLS technique en-
abled us to profi le molecular species of CM-PE and CE-
PE in human erythrocytes and plasma even without LC 
separation ( Fig. 4 , supplementary  Fig. I ). These results 
provide direct information on the molecular species of 
AGE-PE in erythrocytes and plasma and indicate that PE 
glycation proceeds toward the formation of AGE-PE in 
vivo. However, compared with native PE molecular spe-
cies composition, 18:0-20:4 and 18:0-22:6 species were 
higher in erythrocyte CM-PE composition ( Fig. 4 ,  Table 
1 ). It suggests that 18:0-20:4 and 18:0-22:6 PE are suscep-
tible to carboxymethylation or these CM-PE molecular 
species are more stable than the others in erythrocytes, 
but the possibilities require investigation. In this study, 
we analyzed glycation products of diacyl PE species; how-
ever, alkenyl-acyl PE (plasmalogen) species are also in 
biological specimens. It appears likely that glycated alke-
nyl-acyl PE species are also generated in vivo. However, 
due to the limited source of pure alkenyl-acyl PE species, 
it is diffi cult at present to prepare plasmenyl AGE-PE mo-
lecular species as authentic standards for LC-MS/MS 
analysis. Thus, we could not evaluate the plasmenyl AGE-
PE species in this study. 

 MRM experiments can provide accurate quantitation of 
lipid molecules, as reviewed by Sullards ( 21 ). In the pres-
ent study, LC-MS/MS with MRM was highly useful for the 
measurement of AGE-PE in blood samples. Based on the 
results of NLS, we focused on eight molecular species 
(16:0-18:1, 16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-18:1, 18:0-
18:2, 18:0-20:4, and 18:0-22:6) of both CM-PE and CE-PE 
in erythrocytes and plasma and determined individual 

with MRM. Parameters were optimized to permit MRM de-
tection and LC separation by using synthetic reference 
compounds (  Fig. 5A  ).  Under the optimized conditions, all 
calibration curves showed good linearity (0.998–0.999) 
( Fig. 5B ), with detection limits of 5 fmol/injection at a 
signal-to-noise ratio of 3. The eight molecular species of 
both CM-PE and CE-PE were clearly detected in MRM 
chromatograms of erythrocytes (  Fig. 6  ).  Most of the AGE-
PE molecular species were also shown in plasma MRM 
chromatograms (supplementary  Fig. II ). As shown in 
  Tables 1  and  2  ,  no signifi cant differences were observed in 
CM-PE and CE-PE concentrations in erythrocytes and 
plasma between healthy subjects and diabetic patients. In 
contrast, Amadori-PE concentrations were signifi cantly 
higher in diabetic erythrocytes and plasma ( Tables 1 and   2 ). 

DISCUSSION

 For the occurrence of AGE of PE in vivo, there have 
been at least three confl icting reports ( 12–14 ). Requena 
et al. ( 12 ) and Pamplona et al. ( 13 ) detected hydrolysis 
product of CM-PE in the acid hydrolysates of human eryth-
rocyte and mammalian mitochondrial phospholipids us-
ing GC-MS. These studies demonstrated the presence of 
AGE-PE in vivo; however, the GC-MS technique could not 
provide direct structural information (e.g., acyl chain com-
position) of AGE-PE. Breitling-Utzmann et al. ( 14 ) re-
ported an LC-MS assay for AGE-PE. However, probably 
due to the insuffi cient sensitivity, they could not detect 
CM-PE and CE-PE in human erythrocytes. 

 A recently developed QTRAP MS/MS offers specifi c 
benefi ts ( 18 ) for biomolecular analysis including lipid 
molecules ( 7, 19, 20 ). The QTRAP MS/MS allows product 
ion scanning, NLS, and MRM, providing useful structural 
information of the analytes even in the presence of back-
ground contaminants in complex biological materials. In 
the present study, using synthesized CM-PE and CE-PE 
as reference compounds, we developed an LC-MS/MS 

  Fig.   6.  Typical MRM chromatograms of CM-PE and CE-PE molecular species in human erythrocytes. An 
erythrocyte lipid extract (2 µl) of a healthy human subject was subjected to LC-MS/MS with MRM.   
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 TABLE 1. Lipid glycation products in erythrocytes of healthy subjects and diabetic patients 

Molecular 
Species

Packed Cells Packed Cells

CM-PE CE-PE Amadori-PE Native PE

Healthy Diabetic Healthy Diabetic Healthy Diabetic Healthy Diabetic

 pmol/ml  nmol/ml 
16:0-18:1 5 ± 6 2 ± 1 15 ± 6 11 ± 4 150 ± 22 621 ± 217  a  54 ± 9 60 ± 7
16:0-18:2 1 ± 0 0 ± 0 6 ± 2 5 ± 1 9 ± 1 33 ± 11  a  29 ± 5 30 ± 5
16:0-20:4 5 ± 2 7 ± 5 14 ± 5 12 ± 5 124 ± 18 462 ± 168  a  209 ± 32 197 ± 29
16:0-22:6 9 ± 7 11 ± 6 10 ± 4 10 ± 4 55 ± 14 198 ± 58  a  278 ± 63 332 ± 86
18:0-18:1 15 ± 5 18 ± 12 5 ± 2 3 ± 1 107 ± 18 428 ± 165  a  20 ± 2 21 ± 4
18:0-18:2 9 ± 7 17 ± 16 7 ± 2 4 ± 1 72 ± 16 251 ± 99  a  29 ± 4 29 ± 5
18:0-20:4 423 ± 60 567 ± 452 15 ± 3 12 ± 3 179 ± 34 714 ± 311  a  123 ± 15 134 ± 21
18:0-22:6 60 ± 16 82 ± 60 10 ± 2 11 ± 3 17 ± 5 86 ± 30  a  53 ± 6 56 ± 6
Total 528 ± 83  b  705 ± 533 82 ± 24 68 ± 16 712 ± 52 2,793 ± 989  a  794 ± 106 859 ± 110

(0.67 ± 0.09)  c  (0.80 ± 0.53) (0.l0 ± 0.04) (0.08 ± 0.02) (0.91 ± 0.11) (3.38 ± 1.59)  a  

Values are means ± SD (n = 8 for healthy subjects and n = 10 for diabetic patients).
  a    P  < 0.01 compared with healthy subjects.
  b   Concentrations of lipid glycation products are presented as sum of molecular species of 16:0-18:1, 16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-18:1, 

18:0-18:2, 18:0-20:4, and 18:0-22:6.
  c   Number in parenthesis represents as mmol/mol of total CM-PE, CE-PE, or Amadori-PE species against total native PE species.

 According to the protein glycation mechanism, the 
generation of CM derivatives requires an oxidation step. 
The reaction proceeds via the oxidative degradation of 
Amadori products ( 25 ) and/or the reaction of amines 
with glyoxal, a product of glucose autoxidation as well as 
lipid peroxidation ( 26, 27 ). On the other hand, CE deriv-
atives ( 28 ) are reaction products of the C-3 unit methylgly-
oxal, which is a product formed by reverse aldol reaction 
of 3-deoxyosones, enzymatic synthesis from dihydroxyace-
tone phosphate, and nonenzymatic dephosphorylation 
of glyceraldehyde phosphate or dihydroxyacetone phos-
phate. Considering this literature ( 25–28 ), the plausible 
formation mechanism of CM-PE and CE-PE is depicted in 
 Fig. 1B . The different formation mechanisms between 
CM-PE and CE-PE may explain why the CM-PE level is 
higher than that of CE-PE in vivo ( Tables 1 and 2 ). In ad-
dition, CM-PE and CE-PE might be used as biomarkers for 
oxidative stress and carbonyl stress, respectively. 

 In the present study, among the glycation products of PE, 
only Amadori-PE was signifi cantly elevated in erythrocytes 

concentrations using MRM. For LC separation, we investi-
gated LC conditions and adopted an ODS column for 
separation of AGE-PE species. A silica column under hy-
drophilic interaction chromatography mode was used for 
separation of both Amadori-PE and nonglycated PE. These 
LC conditions could reduce background noise and im-
prove resolutions of the analytes. Under the present con-
ditions, the detection limits of AGE-PE by MRM were 
around 5 fmol/injection, which were relatively sensitive 
compared with that of LC analysis of phospholipid deriva-
tives, such as phospholipid hydroperoxides ( 22, 23 ) and 
platelet-activating factor-like phospholipids ( 24 ) (detec-
tion limits above picomole levels). Synthetic CM-PE and 
CE-PE standards permitted the quantitation of predomi-
nant AGE-PE molecular species in human erythrocytes 
and plasma ( Figs. 5 and 6 , supplementary  Fig. II ). In this 
study, however, interfering peaks in MRM chromatograms 
made it diffi cult to determine minor AGE-PE molecular 
species (e.g., 18:0-18:1 CE-PE) in plasma (supplementary 
 Fig. II ,  Table   2 ). 

 TABLE 2. Lipid glycation products in plasma of healthy subjects and diabetic patients 

CM-PE CE-PE Amadori-PE Native PE

Molecular species Healthy Diabetic Healthy Diabetic Healthy Diabetic  a  Healthy Diabetic

 pmol/ml  nmol/ml 
16:0-18:1 0.3 ± 0.3 0.2 ± 0.1 <0.1 0.1 ± 0.1 8 ± 6 27 ± 13 0.3 ± 0.2 0.8 ± 0.4  a  
16:0-18:2 0.2 ± 0.1 0.l ± 0.1 0.4 ± 0.1 0.5 ± 0.2 4 ± 1 9 ± 3 l.3 ± 0.4 2.5 ± 1.0  a  
16:0-20:4 0.6 ± 0.3 0.6 ± 0.3 0.4 ± 0.3 0.6 ± 0.3 39 ± 22 159 ± 75 3.5 ± 1.0 6.0 ± 2.1  a  
16:0-22:6 2.4 ± 2.0 2.5 ± 1.0 0.9 ± 0.5 1.9 ± 0.7 15 ± 7 95 ± 61 25.l ± 7.1 62.7 ± 17.3  a  
18:0-18:1 0.5 ± 0.2 0.3 ± 0.2 <0.1 <0.1 7 ± 3 25 ± 10 l.0 ± 0.4 l.3 ± 0.5
18:0-18:2 0.9 ± 0.5 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 23 ± 8 72 ± 39 2.9 ± 1.0 4.4 ± 1.9
18:0-20:4 2.9 ± 1 .9 1.8 ± 1.1 0.4 ± 0.2 0.5 ± 0.2 64 ± 23 324 ± 183 10.9 ± 3.8 14.3 ± 5.1
18:0-22:6 0.4 ± 0.2 0.9 ± 0.8 <0.1 0.4 ± 0.3 6 ± 2 46 ± 28 10.5 ± 3.7 26.9 ± 8.9  a  
Total 7.7 ± 3.5  b  6.6 ± 3.1 2.5 ± 1.1 4.2 ± 1.5 165 ± 66 757 ± 377 55.4 ± 15.6 119 ± 33.9  a  

(0.15 ± 0.07)  c  (0.06 ± 0.02) (0.05 ± 0.03) (0.04 ± 0.01) (2.97 ± 0.88) (6.30 ± 1.91)

Values are means ± SD (n = 8 for healthy subjects and n = 10 for diabetic patients).
  a    P  < 0.01 compared with healthy subjects.
  b   Concentrations of lipid glycation products are presented as sum of molecular species of 16:0-18:1, 16:0-18:2, 16:0-20:4, 16:0-22:6, 18:0-18:1, 

18:0-18:2, 18:0-20:4, and 18:0-22:6.
  c   Number in parenthesis represents as mmol/mol of total CM-PE, CE-PE, or Amadori-PE species against total native PE species.
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and plasma of diabetic subjects ( Tables 1 and 2 ). The data 
suggest that hyperglycemia in diabetic patients does not af-
fect AGE-PE concentrations in erythrocytes and plasma, 
whereas the Amadori-PE concentration was markedly in-
creased under hyperglycemic conditions. Similar to the pres-
ent results, Requena et al. ( 12 ) reported that no differences 
were observed in erythrocyte CM-PE levels between healthy 
and diabetic subjects. The reason given was that the diabetic 
patients participating in that study were free of complications 
( 12 ). Thus, AGE-PE might have accumulated more in dia-
betic patients with severe complications, because oxidative 
stress and carbonyl stress under hyperglycemic conditions 
are considered to be involved in the pathogenesis of diabetic 
complications. In this study, like AGE-PE, no signifi cant dif-
ferences were observed in plasma concentrations of car-
boxymethyllysine (one of the well-known protein AGEs) 
between healthy subjects and diabetic patients (data not 
shown). Therefore, in a future study, it should be necessary 
to further elucidate the involvement of AGE lipids and AGE 
proteins in the pathogenesis of diabetic complications by 
analyzing their levels between diabetic patients with and with-
out complications. On the other hand, as mentioned above, 
we found that Amadori-PE, but not carboxymethyllysine, was 
higher in diabetic blood. The result suggests that Amadori-
PE is more prone to be accumulated compared with car-
boxymethyllysine, even in early stages of diabetes. This may 
be related to the fact that Amadori-PE and carboxymethylly-
sine are early and advanced glycation products, respectively 
( 29, 30 ). To put it another way, Amadori-PE may be used as a 
potentially sensitive marker for refl ecting hyperglycemic con-
ditions in the early stage of diabetes ( 31–33 ). 

 In summary, we developed the LC-MS/MS assay for CM-
PE and CE-PE and provided direct information on the mo-
lecular species of AGE-PE in human erythrocytes and 
plasma. The LC-MS/MS technique with MRM will be a 
powerful tool for understanding the pathophysiological 
consequence of in vivo lipid glycation.  

 The authors thank Dr. Phumon Sookwong (Graduate School of 
Agricultural Science, Tohoku University) for excellent technical 
assistance. 
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